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Abstract The paper surveys some of the results related to approach of

hierarchic modeling of the plate problems. The main ideas are explained and

illustrated by numerical examples.
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1. Introduction

The problem of partial differential equations on a special domain W,

typically the "thin" domain is usually simplified by various dimensional

reduction techniques. The aim is to approximately solve the 3 dimensional

problem by a two dimensional formulation. This approach Is widely applied in

the connections with plates and shells. Today many plates and shells theories

(models) are used in practice.

The principles of derivation of these models can be divided into 3

groups.

a) Physical derivation. Here various "a priori" assumptions of geo-

metrical nature are made together with some additional assumptions Involving

Importance of certain stress components. A typical example is the Kirchhoff

hypothesis [l]. This approach was generalized by combination with various

heuristic approaches to treat the anisotropic and laminated plates and shells.

We mention (2], [3], [4] as an example of this type of derivation (see also

references there).

b) Asymptotic analysis Here the main idea is to use the power series

expansion (in the thickness) of the solution. It was analyzed with various

levels of rigor. We mention here [5-121 and references mentioned there as

typical for this approach.

Many results were devoted to the studies of the convergence (when the

thickness d-)O) and the accuracy of the solution and the arguments why

these models are relevant. We mention here for example [41, [11-16] and

refereltccs there.

The appioach of this type lead to the formulations of well known plates

models, as for example, the Reissner-Mindlin model initiated In [8] [17] and

which is a special case of the Naghdi plate theories 11l.
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Various plate models require various types of boundary conditions; more

exactly some models allow to distinguish between certain boundary conditions,

while others do not. As an example we mention that the Reissner-Mindlin model

allows to distinguish between a soft and hard simple support, while the

Kirchhoff model does not. These various boundary conditions could lead to

very different properties of the solution. As an example we mention the

paradox for the hard simple support [18-22] which says that the solution of

the hard simple support on a regular n-gone inscribed in the unit circle does

not converge to the solutions on the circular domain as n--W. In

contrast, for the soft simple support, this paradox is not present. The hard

support paradox also occurs in the 3 dimensional theory [21].

The properties of solution of the Reissner-Hindlin model especially its

boundary layer behavior for smooth domain was studied rigorously in [23],

[241. In (25] the boundary layer for unsmooth domain was heuristically

analyzed. The behavior of the solution in the neighborhood of the corners of

the domain was analyzed in (261 (271. For the survey of various theories for

laminated plates we refer also to (4].

c) Numerical, hierarchical approaches. This approach is a modern one,

and typical for the computer oriented procedures. It is stemming from

general principles of numerical methods, adaptive approaches and a-posteriori

error estimations. Here no particular model is a-priori preferred. This

approach constructs adaptively an optimal numerical method for solving the

three dimensional problem which leads to the accurate computation of data of

interest.

In the next spcfions we will elaborate on this approach. For the sake

of concreteness we will address these questions on the specific model problems

although the results hold in a general setting.
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2) The three dimensional formulatlon of the plate problem

Let weR 2 be a bounded domain with the boundary r and Q = {x =

(xx 2 ,x )e R 3 (xIx )eW, - 1<x3  }. Further we let

{ 1  d}

R±t e {XR 31(x 1 X2 )EGw, x3 = ±d}.

We will refer to the solution of the three dimensional elasticity problem for

an isotropic homogeneous material when the equal normal load lq(x) is acting

on R+, as the exact solution of the plate problem. The solution u =

(ulu 2,u3 ) is the minimizer of the total energy

(2.1) GA(u) = CA(u) - Q(u)

over the set of functions X(()c (H1(0))3 which satisfy certain constraints

on S. The boundary conditions of the plate problems are uniquely

characterized by this set X(M).

In (2.1) we denoted by A(u), the strain energy based on the Hooke's

compliance matrix A for the plate material.

The problem has been formulated for simplicity only for the homogeneous

boundary conditions. For concreteness and simplicity we will deal with the

square plate which we denote by Qs resp. ws = {x1,x2 1 IlxI <0.5, i = 1,2}

and

rI = {xlX21 x I = 0.5, Ix2 < 0.5)

r2 = {xl,x 2 1 x1 < 0.5, x2 = 0.5}

r3 = {xlx 2 1 = -0.5, Ix21 <0.51

r4 = {XlX21 Ix1[ < 0.5, x2 =-0.51

sI = r x (-d/2, d/2), I = 1,2,' '',4.
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The constrain X(() defines various boundary conditions. Let us show

some typical ones which could be imposed for example on S = r I x (-d/2, d/2):

a) clamped u1 = u2 = u3 = 0 on S

b) free no constrain on S1

c) hard simple support: u2 = u3 = 0 on S

d) soft simple support: u3 = 0 on S1

d/2
e) very soft simple support: j u3{xlx2x3) d x 3 =  1, 2xltx2 )  1

-d/2

f) illegal simple support: u 3Cxx ,0) = 0, (Xlx 2 )Er 1

The last type of the simple support is called "illegal", because its

solution is the same as for the free boundary condition. Mathematically,

this follows from the fact that functions of (H 1(0))3 do not have trace on

the one dimensional line rI = {xlx 2 x3 I xlx 2 e r1 x3 = 0}.

Physically it follows from the observation that the displacement under

load concentrated on a line is infinite (Bousinesque solution).

The solution of the three dimensional problem with finite strain energy

exists and is uniquely determined (except of the case of free boundary

conditions on r when the usual additional conditions have to be imposed).

The aims of the computation can be different. For example the interest

can be in the bending moments and shear forces or average displacements, etc.

Further the interest could be only in these values inside the domain W or

at the boundary r or in the neighborhood of r. We can be interested in

the stresses or in the stress intensity functions along the edges and stress

intensity factors in the vertices etc.
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It Is obvious that any imposed boundary condition Is an Idealization.

Hence one can study how the results are itifluenced by the uncertainty of the

idealization of the boundary conditions. We will not address this problem In

details here. Instead we show an example of the modeling of the clamped in

boundary condition for the plate In the case when the solution Is independent

of the variable x2.

Let us consider the plate of thickness d = 1 and span L = 20 with

the modeled clamped end as shown in Fig. 2.1. We will assume that the

material Is homogeneous, Its modulus of elasticity E = 3.107 and Poisson

ratio v = 0.3. Boundary condition e) Is the spring condition with the spring

8
constant C = 10 . Case f In the Fig. 2.1 is the strength of material

model based on the Kircihoff theory. In this case the bending moments In the

1 22 100
middle of the plate Is M = 20 q = 1 q. Normalizing the results by the

moment of the model d) we give the error In the bending moment M in the

middle of the plate In the Table 2.1.
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Figure 2.1 The scheme of various boundary conditions
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Table 2.1 The error of various models of boundary conditions

Case Error In M

a + 8.2%

b + 9.5%

c + 8.0%

d 0%

e +19.9%

f - 0.2%

Table 2.1 clearly shows the influence of the uncertainties in the boundary

condition on the bendings moment. The Influence on the stresses in the

neighborhood of the boundary condition Is much larger. Tor more see [28].

3. The principles of the numerical hierarchical modeling

Let us assume the following form of the displacement

(3.1) ui (x1,x x) =x u fx ) Vj(3)],1 = 1,2,3

j=0

where the functions V,j( i), -1 <-q< 1, may In general depend on d and

n = (n1 n2 ,n3 ), n 1 0, 1 = 1,2,3 are Integers. Because of our assumptions

about the symmetry of the loading we can assume that Vjj(() are anti

-symmetric functions for I = 1,2 and symmetric for j = 3. Then ul, j = 0 for

I = 1,2 and J even and u3,j = 0 for J odd. We will assume that

ue (H1 (0)) 3 3X (() and n can be different In different regions of w.

The following questions arise

a) how to select the functions Vl,j(O)

b) how to select n; uniform or with different values in different

regions of w

6



c) how to derive the differential equations or variational formulations

to determine the functions u jj.

d) how to assess the accuracy of the solution with respect to the data

of interest (when compared with the data of exact 3 dimensional

solution), how to design an adaptive procedure.

Specifying the functions (p j(() and the principles of derivation of
the differential equations for a sequence ni) ( 1 Ci) n 3i), ) = 1,2,

= "nI  ,n2  ,n ,1=12

and any thickness d we construct a family of n-models. This family will be

called hierarchical if it satisfirs the following conditions.

i) Let ud and und be the solution of the 3 dimensional problem of the

plate of thickness d and the solution of the n-model respectively. Then

(3.2) 1IUd-Und./I UdI11-O as d-)O

holds.

Mostly but not exclusively the energy nor' LI'i in (3.2) is considered.

ii) if the solution ud is sufficiently smooth uniformly with respect to

d then

(3.3) SHud - UnlId ll/[[Udl SCinl)do'(nj)

where a(n+) > (nI )

iii) for any fixed d we have

(3.4) llud - u n Id1/11udI11 - O as i--w

and preferably but not necessarily lud - Undil d: 1u - Unjjd.

We remark that the notion of hierarchy depends strongly on the norm [i'1.

We can also define the hierarLhic family by replacing the norm 1111 by another

definition of accuracy, which expresoes the goal of the analysis.

7



4. The basic hierarchy

Let us assume that functions Vij(q) in (3.1) are independent of d.

Then ii the spirit of the requirement (3.3), we can ask which ',j s lead

to that highest a. The answer is: (pj have to be polynomial of degree j.

For the arguments lpading to this conclusion we refer to [291, [30], [311.

Hence (3.1) can be written as

(4.1) u (x x 2 9x3 u j u (xl~x2) [ 1 i d12,
j=O

and as before u =0 for I = 1,2 and j even and u3,j = 0 for j

odd. The main models we can therefore consider are: n = (1,1,0), (1,1,2),

(3,3,2), (3,3,4) etc.

Let us now address the question of deriving the differential equation

for u i,j  We define ui j as the minimizers of the potential energy

(4.2) G B(u) = B(u)-Q(u)

over all u of the form (4.1) belonging to X(M) c (H 12))3 (see also (2.1))

and B teing a Hooke's compliance matrix which has not to be identical with

the matrix A of the plate material. We have

(1-v)E E vE
(1+v)(1-2v) (i+v)(1-2v) (1+v)(i-2v 0 0

(1-v)E vE
(1+v)(1-2v) (1+v)(1-2v) 0

(1-v)E 0 0 0
(1+v)(1-2v)

(4.2) A = E
Symmetric 

E 0 0

E 0
1+v

E
1+V

8



As usual, we denote by E, the modulus of elasticity, and by v, the

Poisson ratio.

We have

Theorem 4.1 The model (1,1,0) with

(4.4) u2 =u 2X3

u3  u3 ,0 and

B =A

is for vo 0 not the member of the hierarchic family (it violates condition

(3.2)).

For more see [32], [33].

Let

E __ 0 0 0 0

1-v 2  1-v
2

E 0 0 0 0

1-V2

E 0 0 0

1-V
2

(4.5) R = E
Symmetric 

E 0 0

EK
!+V

Er.
1+V

where 0 <K < 1 arbitrary. Then we have

Theorem 4. The model (1,1,0) is the member of the hierarchic family when

the matrix B - R defined by (4.5) is used. Then for smooth solution

Iud - Uridl/Uud11SCd i.e. g= 1. Model (1,1,0) with matrix B = R is the

well known Reissner-Mindlin model (see (32], [331).

9



The coefficient K In (4.5) is the shear factor with different values

recommended In the literature. The typical recommendation is K = 5/6 or

0.833 <K< 0.870 as recommended in [34].

Let us consider the example of square plate 0s (see Section 2.1)

uniformly loaded with simple soft support, and d = 0.01. Assume E = 107

and P = 0.3. Further by C(OO we denote

1 i1/2

(4.6) C (0c = [Ie00 (3 dim)I]

where by 9(3 dim) we denoted the strain energy of the 3 dimensional solution

and by 9(W) the strain energy of the (1,1,0) model with B = R given by

(4.5).

In the Table 4.1 we show the energy 9K)0, (3 dim) for various K and

the error C(K).

Table 4.1 Energy S(K) as function of K and the error C.

K &() x 103 C

1 0.234563 2.69
0.91 0.234674 2.26
0.87 0.234729 0.41

0.8453 0.234765 1.16
5/6 0.234783 1.46

KIRCHHOFF 0.232392 9.98

3 DIM 0.234733 --

In the Table 4.1 we also reported the solution of Kirchhoff model. We see

that K = 0.87 leads here to the best result and the Kirchhoff model has a

large error in the energy norm.

Remark The solution of the 3 dimensional formulation is not known in the

analytic form. This solution was numerically computed by the hp-version of

10



FE with refined meshes and error estimation which guarantee that the data

reported here are adequately accurate, I.e., the error does not influence our

conclusions.

As an illustration of Theorem 4.2 consider the problem of clamped-in

plate, uniformly loaded. In the table 4.2 we show C(0.87) as function of d

Table 4.2. The energy 9(K) and the error C as function of d.

d 3 DIM RH, K=0.87 %RMH

0.10 0.242115(-6) 0.245521(-6) 11.8%

0.025 0.149115(-4) 0.149256(-4) 3.07%

0.01 0.232489(-3) 0.232524(-3) 1.2%

We clearly see the convergence rate c = 1.

E
The shear factor Influences only the two terms in the lower right

corner of the matrix A. Hence we could consider also for higher models the

matrix A with the shear factor influencing these two values.

We have

Theorem 4.3 The models (n,n,n+l), n = 1,2,..., using the matrix B = R do

not belong to the hierarchic family because condition (3.2) does not hold.

Theorem 4.4 The sequence of the models (n,n,n+l), n = 1,2,... is hierarchic

for B = A and is not hierarchic when B = A

Table 4.3 which addresses the problem of the square plate with soft support

Illustrates Theorem 4.4.

11



Table 4.3 Energy 9 for different models and the error

Model 9 • 103  C B

1 (1,1,2) 0.234528 2.95 A

1 (3,3,4) 0.234731 0.29 A

1 (5,5,6) 0.234732 0.01 A

S

0.87 (1,1,2) 0.234693 1.3 A
S

0.87 (3,3,4) 0.234913 2.76 A
0

0.87 (5,5,6) 0.234914 2.78 A

3 dim 0.234733

Remark In all examples we mention the exact solutions of the differential

equations of the models. They were solved numerically with the error control

so that the reported data are exact in the range we used for our conclusions.

5) Capturing the boundary layer

As has been said above, we compare the solution of the n-model with the

solution of the three dimensional problem. The accuracy then has to be

assessed relatively to the data of interest.

Let us be interested in the behavior and accuracy of the bending moments

and shear forces in the neighborhood of the boundary.

Consider the problem of unit square plate Qs (d = 0.01) and compare the

values of the twist moment M12 (0.4,x2 ) computed from the 3 dimensional

formulation, RH model (i.e. (1,1,0) model with B = R and K = 0.87) and

(1,1,2) model with B = A, K = 1.

12



Table 5.1a Twist moment M 12(0.4,x 2 ) for the hard and soft simple support.

HARD SOFT

3 DIM RM (1,1,2) 3 DIM RM (1,1,2)

0 0 0 0 0 0 0

0.02368 0.002 0.002 0.002 0.002 0.001 0.002

0.11842 0.009 0.009 0.009 0.009 0.009 0.009

0.21316 0.016 0.016 0.016 0.016 0.016 0.016

0.45000 0.029 0.029 0.029 0.029 0.029 0.029

0.48079 0.029 0.029 0.029 0.030 0.030 0.030

0.49026 0.029 0.029 0.029 0.029 0.029 0.028

0.49500 0.029 0.029 0.029 0.024 0.024 0,025

0.49713 0.030 0.030 0.039 0.018 0.018 0.019

0.49903 0.030 0.030 0.030 0.008 0.008 0.008

0.49950 0.030 0.030 0.030 0.005 0.005 0.005

0.50000 0.030 0.030 0.030 0 0 0

Table 5.1b Twist moment M12 (O.5,x2) for hard support.

3 DIM RH (1,1,2)

0 0 0 0

0.02368 0.002 0.002 0.002

0.11842 0.010 0.010 0.010

0.21316 0.017 0.017 0.017

0.45000 0.031 0.031 0.031

0.48079 0.032 0.032 0.032

0.49026 0.032 0.032 0.032

0.49500 0.032 0.032 0.032

0.49713 0.033 0.033 0.033

0.49903 0.033 0.033 0.033

0.49950 0.033 0.033 0.033

0.50000 0.035 0.035 0.035

13



We see clearly that the boundary layer is present for the soft support

and is practically not existent for the hard support. Let us remark that

M 12(0.5,x2 ) = 0 for the soft support.

In the tables 5.2a, b we show the analogous results for the shear forces

Q31 and Q3 2 "

Table 5.2a. The shear forces Q3 1 (0.4,x2 ) for the hard and soft support

HARD SOFT

3 DIM RM (1,1,2) 3 DIM RM (1,1,2)

0 0.246 0.246 0.246 0.245 0.246 0.246

0.02368 0.245 0.245 0.245 0.245 0.245 0.245

0.11842 0.235 0.234 0.234 0.235 0.234 0.234

0.21316 0.208 0.208 0.208 0.208 0.208 0.208

0.45000 0.052 0.053 0.053 0.053 0.056 0.055

0.48079 0.020 0.021 0.021 -0.005 0.001 0.006

0.49026 0.010 0.011 0.011 -0.419 -0.403 -0.343

0.49500 0.005 0.005 0.005 -1.921 -1.912 -1.822

0.49713 0.003 0.003 0.003 -3.775 -3.817 -3.824

0.49903 0.001 0.001 0.001 -6.974 -7.047 -7.379

0.49950 0.001 0.000 0.000 -8.167 -8.214 -8,695

0.50000 0 0.000 0.000 -9.718 -9.639 -10.323

14



Table 5.2b The shear force Q31(0.5,x2 ) and Q3 2 (0.5,x2 ) for the soft

support

Q3 1 (0.5,x2 ) Q3 2 (0.5,x2 )

2  3 DIM RM (1,1,2) 3 DIM RM (1,1,2)

0 0.420 0.420 0.420 0 0 0

0.02368 0.420 0.420 0.420 -0.643 -63801 -0.685

0.11842 0.408 0.408 0.408 -3.199 -3.173 -3.399

0.21316 0.374 0.374 0.374 -5.663 -5.617 -6.018

0.45000 0.133 0.133 0.135 -10.451 -10.363 -11.005

0.48079 -0.133 -0.125 -0.105 -10.635 -10.559 -11.332

0.49026 -0.813 -0.807 -0.756 -9.905 -9.844 -10.651

0.49500 -2.175 -2.188 -2.157 -8.600 -8.505 -9.251

0.49713 -3.514 -3.573 -3.645 -7.706 -7.569 -8.221

0.49903 -5.462 -5.499 -5.815 -6.954 -6.881 -7.368

0.49950 -6.069 -6.073 -6.485 -6.838 -6.727 -7.252

0.50000 -6.793 -6.678 -7.221 -6.793 -6.678 -7.221

Let us analyse now the strength of the boundary layer. To this end let

us define the functions 931(x1,x2).

exp[1-931 (x1 , x 2  (0.5 -x 2)/d)

H S
IQ3 1(x1 ,x2) - Q3 1(x1 ,x2 )1

Q3 1 (x1 0.5)

Because the hard support solution has no boundary layer, we use It as a "base"

smooth function. Functions g31 characterizes the strength of the boundary

layer. Table 5.3 shows the values of g31 (X3 x,2 ) for x1 = 0.4, 0.5.

15



Table 5.3 The strength function 31 (x1,x ) of the boundary layer for the

soft support

X = 0.4 Xl = 0.5

3 DIM RM (1,1,2) 3 DIM RM (1,1,2)

0.49263 3.22 3.25 3.43 2.17 2.21 2 37

0.49500 3.24 3.24 3.47 2.27 2.23 2.41

0.49666 3.28 3.24 3.47 2.28 2.20 2.39

0.49878 3.40 3.23 3.47 2.23 2.04 2.24

0.49950 3.51 3.23 3.47 2.22 1.91 2.12

0.49989 3.62 3.24 3.47 2.22 1.83 2.12

0.49991 3.63 3.24 3.47 2.21 1.83 2.03

0.49994 3.63 3.23 3.47 2.21 1.83 2.03

It has been shown in [23] [24] that for the smooth boundary g3 1 (x1,x2)

= Vr12K = 3.23 (in our case) which can be used If x1 z 0.5. In (25] is

suggested that g31(0.5, x 2 ) z 6 = 2.28. We see that the value 3.23 very

well describes the character of the boundary layer while the exact theoretical

strength for x1 = 0.5 is yet an open question. We also see that the

boundary layer of the 3 dimensional solution as well as of the model (1,1,2)

Is stronger than of the RM model. We will return to this question later in

this section.

As d--0 then the difference between hard and smooth support dis-

appears when measured In the energy norm. It is not the case for the data at

the boundary. We can expect for example that dQ3 1 (0.5, 0.5) converges as

d- 0 to some value (although not yet proven).

In the table 5.4 we show the values of Q3 1(0.5, 0.5) and dQ3 1 (0.5,0.5)

computed from RM model for K = 5/6.
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Table 5.4 The values of Q3 1 (0.5, 0.5) for RH model as function of d for

the soft simple support.

d Q31 (0.5, 0.5) dQ3 1 (0.5, 0.5)

0.025 -2.68 -0.0671

0.01 -6.54 -0.0654

We can expect that for fixed d, Q3 1 (0.5, 0.5) is proportional to Vr'.

In Table 5.5 we show some values for d = 0.01.

Table 5.5 Q3 1 (0.5, 0.5) as function of K for the RM model

K Q3 1(0.5, 0.5) -1/2 Q3 1(0.5, 0.5)

1 -7.15 -7.15
0.91 -6.83 -7.16
0.87 -6.68 -7.16
5/6 -6.54 -7.16

So far we have seen that the RM model describes reasonably well the

moments although the strength of the boundary layer is more than 10% off.

Our discussion was for the soft simple support. For other boundary

conditions the situation can be different. As an example we consider the

problem of the square plate Q of thickness d = 0.01 with all four sides5

clamped-in. In the Table 5.6 we report the values of the moments M 11(x10)

and M2 2(X1 0).
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Table 5.6 The moment M1 1 (x1 ,0) and M2 2 (x1 ,0) for various models

11 (xl,0) M 2 2 (x1,0)
1 3 DIM RM (1,1,2) 3 DIM RM (1,1,2)

0 -0.0229 -0.0229 -0.0229 -0.0229 -0.0229 -0.0229

0.0000 -0.0157 -0.0157 -0.0157 -0.0157 -0.0163 -0.0163

0.4000 +0.0164 +0.0163 +0.0164 +0.0026 +0.0027 +0.0026

0.4900 0.0470 0.0470 0.0470 0.0141 0.0141 0.0141

0.4930 0.0483 0.0483 0.0483 0.0145 0.0144 0.0144

0.4990 0.0509 0.0509 0.0509 0.0168 0.0152 0.0170

0.4993 0.0510 0.0510 0.0510 0.0176 0.0153 0.0179

0.4999 0.0512 0.0512 0.0512 0.0207 0.0153 0,0212

0.5000 0.0513 0.0513 0.0513 0.0220 0.0153 0.0220

We see that the error in M 11(x10) is negligible for RM and the (1,1,2)

model and no boundary layer Is present. The moment M 22(X,0) computed from

the RM model has no boundary layer either, but has error 30%. In contrast,

3 dimensional solution shows very strong boundary layer.

We will analyze the strength of the boundary layer as before. Let us

define 122{XlX2)

exp _i22(xl.X} )(0.5-x2))

4RM(0x ) M Cx#

22 2 22 O.5,x 2)

Here we did use 22(x ,x2 ) as the smooth extension of H22 .
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Table 5.7 The strength function 122 (x,0) of the boundary layer for the

clamped plate.

xI  3 DIM (1,1,2)

0.4990 15.43 13.86

0.4996 18.17 13.41

0.4999 23.85 13.32

0.49993 24.13 13.32

0.49999 24.78 13.30

We see that the 3 dimensional solution shows very strong boundary layer

for the moment M22. The model (1.1.2) shows a relatively strong boundary

layer and reasonable accuracy, but RM model leads to very poor results in the

boundary area.

Let us mention (see [35]) that theoretical strength of the boundary layer

for the model (1,1,2) is . =- 13.1 which is in very good agreement with

the data in Table 5.7. For additional details see also [36].

Summarizing we see that no model guarantees good results and hence only

adaptive approaches with a-posteriori estimates could lead to the accuracy

with prescribed accuracy.
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6) Solution behavior in the neighborhood of the corners

The solution of the three dimensional plate formulation has singular

behavior in the neighborhood of the edges and vertices and the exact character

of this singular behavior is known (371 [38]. Although the stresses are in

general singular in the neighborhood of all edges, the moments and shear

forces computed from the three dimensional solutions are singular only in

the neighborhood of the corners of the boundary r of w. This behavior

is also influenced by the boundary layer. Nevertheless in the very small

neighborhood of the corner of r (for simplicity placed in the origin) the

moments Mlj and shear forces Q3J can be written (for rfd) in the form

MIj = C l () + smoother terms

(6.1)

Q3J = D rAl-J (6) + smoother terms

where r, e are polar coordinates and C j, D are analogs to the stress

intensity factors of the plane elasticity.

Any model, for example RM, n-model or t - Kirchhoff model (which will be

addressed in Section 7), yields the solution behavior of the same form as in

(6.1) but the coefficient A, I = 1,2, and the functions Vij (9), @j(e)

depend on the model.

For the analysis and the determination of AI we refer to [261 where we

have proven the following theorem.

Theorem 5.1 i) For any model (n,n,n+l), nk 1 the coefficients AI in (6.1)

are the same as for the 3 dimensional solution.

II) The Riessner-Mindlin, as well as the Kirchhoff model, yield in

general the singular behavior which is different when compared with the 3

dimensional solution.
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In [26] (see also [361), we address these singular behaviors in details.

Here we will illustrate the results on only one example.

Consider the square plate uniformly bounded, which is clamped on the

bounded sides r2, r4 and free on the vertical sides rl, fr3 (see (2.2)).

The singularity coefficients AI X2 for the Riessner-Mindlin, (1,1,2),

and Kirchhoff model are given in Table 6.1.

Table 6.1 The singularity coefficients A , A2 for various models

3 DIM
RM (1,1,2) K

A1  0.7583 0.7112 1.0687

+1 0.4386

2 1 1 0.687
+i 0.4386

In the case when AI in (6.1) is an integer, the notion of smoother

terms has to be properly understood. Nevertheless, we will not go here in

details, although this case is present in our example. If the coefficient A

is a complex, then (6.1) has to be understood as the real part of this

expression and the moments and shear forces oscilate.

In Fig. 6.1, we show in log-log scale, the moment M22 on the line

xI = x2 as the function of r (distance from the vertex of the plate). We

used d = 0.01 and v = 0.3. In the figure we also show the theoretical

slope based on the data shown in the table 6.1.
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Figure 6.1 The moment M2 for the 3 dimensional solution and RM model.

In Figure 6.2 we show the moments M ilM 22as well shear force Q3

for the RM model.

0.100 -02 -30
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Figure 6.2 The behavior of M11 II 22 and Q 2for the RM model.
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Returning to the table 6.1 we see that the Kirchhoff model yields

oscilating behavior of the moment M2 2. We also mentioned that for d--O,

all the models converge to the Kirchhoff solution inside the domain W. Hence

we can expect that on the line x, = x2 we will see increased number of

oscillations in the moment M22 as d--0. Figure 6.3 shows the behavior of

the moment MN2 2 computed from 3 dimensional solution for d = 0.0.1. We see

clearly the effect of the predicted oscillation although in a weak form.

0.250

Z 0.050-
i 0.025

10-5 10-4 10-3 i0"2 I0"1

- r--

Figure 6.3 The behavior of the moment M22 for the 3 dimensional solution.

7) The Kirchhoff model.

The Kirchhoff model describes the limiting solution of the plate

problem as d--0. It can describe only the restricted set of the boundary

conditions. Let us address this condition in relation to the problem of simply

supported plate and one would like to know whether the Kirchhoff model appro-

ximates the hard or soft simple support. Because of physical Interpretation

of the Kirchhoff hypotheses, we can expect that it approximates the hard

simple support. This can be further supported by the following observations.
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The Kirchhoff model leads to the polygon paradox as the hard simple

support in 3 dimensional setting does.

Table 7.1 shows (d = 0.01, v = 0.3) the comparison between the Kirchhoff

and 3 dimensional formulation

Table 7.1 The comparison of the Kirchhoff and 3 dimensional formulation.

Q31(0.4,0.5) Q31(0.5-0,0.5) M12 (0.5-0,0.5)

Hard support 0 0 0.0325

Soft support -9.72 -6.79 0

Kirchhoff 0 0 0.0325

As usually we denoted

Q31 (0.5-0, 0.5) = lim Q3 1(x, 0.5)x*O.5

Often in the Kirchhoff theory (see [39]), the reaction, for example

V2 = Q32 (for x2 = 0.5), is computed from the formula

V= [ 32 x

The formula tries to simulate the reaction for the soft support by the

solution for the hard support. Although this simulation is partly successful,

it does not lead to the limiting value for d-)0. Further the approxi-

mation values for Q32 (xl,O.5) cannot be predicted at all (see Table 7.1).

The Kirchhoff model in the case of simple support, leads to the negative

concentrated reaction in the corner. It is interesting to compare the value

of this reaction with the integral of negative shear force (reaction for the

soft support. We get R = 0.0290 compared with the Kirchhoff value V = 0.0325,

i.e. 10% difference. For more details we refer to (35].
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8. The Optimal Models

In the Section 3, we assumed the form (3.1) as the base for the approxi-

mate solution of the plate problem. In the Section 4 we concluded that, from

the asymptotic point of view, Vi (n) should be a polynomials. We can ask the

question whether polynomials are optimal when d Is fixed. The functions
0

(p will be optimal if they give the minimal error among all possible

choices of VIli(-) (e.g. in the energy norm). In [31] it has been shown that

polynomials are not optimal for d>O. The optimal (li (n) are essentially

of the form shan where a depend on the class of function under considera-

tion and the thickness d. The proper choices are of great Importance for the

laminated plates. For more details about the hierarchical models for laminated

plates we refer to (401.

9. Adaptive modelling and a-Rosteriorl error estimates

We based our models on the form (4.1). Obviously the term a_) can be

replaced by an arbitrary polynomial of degree : j in x3 . We would like to

have only a minimal number of terms which will contribute to the solution i.e.

that JUlj I will decrease with increasing J. This can be achieved by

selecting V ( a-j where P is the Legendre polynomial. Then the

adaptive approach, which selects different n in the different regions of the

plate, can be governed by the requirement that lui,ni > c, I = 1,2,3 in the

region, where it is defined. The a-posteriori error estimation can also be

extracted from the analysis of the change when nI  is increased. This is in

the same spirit as the error estimation in the finite element method. In fact

we can understand the modelling as special case of the finite element method

[331. Nevertheless we will not go here in more details. For some results

about adaptive approach we refer also to [411.
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10. Numerical solution of the plate models.

Using the form (4.1) in the variational principle we can understand it

as the p-version of the finite element solution when degree q is used in x3

variable [33]. In xlx 2 the domain w is partitioned into elements and the

h or p or hp version of finite element can be used.

The discretions In the variables xl,x 2  leads to a locking problem. For

general theory of locking and quantitative assessment of the locking we refer

to [42]. The locking expresses the fact that as d--0, the performance

deteriorates. Nevertheless it is necessary to realize that, as d--0, the

boundary layer becomes stronger and hence it also Influences the performance.

Hence in the locking analysis and the numerical experimentation the smoothness

of the exact solution has to be Independent of d.

Let us address the solution of the RM model (the (1,1,0) model with

B = R). We assume that in the variables (x1 ,x2 ) the elements are rectangular

of degree p (the serendipity elements) on square mesh of the size h. Then

the rate of convergence due to locking is hp -1 (measured in the energy norm),

while the best possible approximation is of the order hp . Hence we have a

loss of "one unit" in the rate. Nevertheless, this "loss" for higher order

elements is visible only for d very small. Let us show an example. We

consider the unit square plate 0 with hard simple support (because theS

boundary layer is very week (v = 0.3)). Figure 10.1 shows the accuracy of the

method when uniform mesh of different sizes h is used. The rate hp is also

shown in the Figure 10.1. We see that for d = 0.01 and p = 1 convergence

is virtually not present while for p = 4 we do not see any loss of convergence

rate for all 0.1Sd:0.01.
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Fig.10.1 The Convergence of h-version of the RM model a: d =0.1
b: d = 0.025 c: d - 0.01

Using the model (1,1,2) we get quite analogous results
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Fig.10.2 The Convergence for the (1,1,2) model a: d =0.1
b: d - 0.025 c: d - 0.01
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Hence the locking is essentially not Influenced by the selection of the model.

It Is necessarily to realize that higher models show stronger boundary

layer and its relation to the mesh size can lead to the wrong conclusion

that the locking disappears as d-O. Figure 10.3 shows the effect for

the model (3,3,4). For more se [331.

S100 0 d 01

0.. S

~0.01-0.025

.0d1.0
V4 118 1/12

- h

Figure 10.3 The convergence of the h-version for the (3,3,4) model (p=4).
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